Evaluation of Different Data Mining Algorithms with KDD CUP 99 Data Set
نویسندگان
چکیده
Data mining is the modern technique for analysis of huge of data such as KDD CUP 99 data set that is applied in network intrusion detection. Large amount of data can be handled with the data mining technology. It is still in developing state, it can become more effective as it is growing rapidly. Our work in this paper survey is for the most algorithms Data Mining using KDD CUP 99 data set in the classification of attacks and compared their results which have been reached, and being used of the performance measurement such as, True Positive Rate (TP), False Alarm Rate(FP), Percentage of Successful Prediction (PSP) and training time (TT) to show the results, the reason for this survey is to compare the results and select the best system for detecting intrusion(classification). The results showed that the Data Mining algorithms differ in the proportion of determining the rate of the attack, according to its type. The algorithm Random Forest Classifier detection is the highest rate of attack of the DOS, While Fuzzy Logic algorithm was the highest in detection Probe attack. The two categories R2U and R2L attacks have been identified well by using an MARS, Fuzzy logic and Random Forest classifiers respectively. MARS getting higher accuracy in classification, while PART classification algorithm got less accuracy. OneR got the least training time, otherwise Fuzzy Logic algorithm and MLP algorithm got higher training time.
منابع مشابه
Efficient Intrusion Detection Using Principal Component Analysis
Most current intrusion detection systems are signature based ones or machine learning based methods. Despite the number of machine learning algorithms applied to KDD 99 cup, none of them have introduced a pre-model to reduce the huge information quantity present in the different KDD 99 datasets. We introduce a method that applies to the different datasets before performing any of the different ...
متن کاملEigenconnections to Intrusion Detection
Most current intrusion detection systems are signature based ones or machine learning based methods. Despite the number of machine learning algorithms applied to KDD 99 cup, none of them have introduced a pre-model to reduce the huge information quantity present in the different KDD 99 datasets. We introduce a method that applies to the different datasets before performing any of the different ...
متن کاملSome Clustering Algorithms to Enhance the Performance of the Network Intrusion Detection System
Most current intrusion detection systems are signature based ones or machine learning based methods. Despite the number of machine learning algorithms applied to KDD 99 cup, none of them have introduced a pre-model to reduce the huge information quantity present in the different KDD 99 datasets. Clustering is an important task in mining evolving data streams. Besides the limited memory and one-...
متن کاملAnalysis of KDD CUP 99 Dataset using Clustering based Data Mining
The KDD Cup 99 dataset has been the point of attraction for many researchers in the field of intrusion detection from the last decade. Many researchers have contributed their efforts to analyze the dataset by different techniques. Analysis can be used in any type of industry that produces and consumes data, of course that includes security. This paper is an analysis of 10% of KDD cup’99 trainin...
متن کاملApplication of Additive Groves Ensemble with Multiple Counts Feature Evaluation to KDD Cup'09 Small Data Set
This paper describes a field trial for a recently developed ensemble called Additive Groves on KDD Cup’09 competition. Additive Groves were applied to three tasks provided at the competition using the ”small” data set. On one of the three tasks, appetency, we achieved the best result among participants who similarly worked with the small dataset only. Postcompetition analysis showed that less s...
متن کامل